Note

USE OF SPREADSHEETS IN THERMAL ANALYSIS. PART 2

LEO REICH

Department of Chemistry and Chemical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030 (U.S.A.)

(Received 25 February 1988)

ABSTRACT

Many highly capable spreadsheets are now commercially available. They have found much use in various business applications such as business reports and as graphic generators. However, spreadsheets have been little employed in the field of thermal analysis.

The aim of this paper is to extend the utilization of spreadsheets to dynamic thermogravimetric analysis (TG) (as well as to similar techniques as differential scanning calorimetry) for the estimation of kinetic parameters and mechanism during the decomposition of various materials. To this end, various worksheets containing Macro commands were employed in this paper for the spreadsheet analysis of TG data. In this manner, analyses were carried out for the determination of the activation energy E and the mechanism, employing TG theoretical data and TG data for materials such as sodium bicarbonate. Final results are presented and compared with reported and theoretical results.

INTRODUCTION

There are many spreadsheets which have become commercially available in the past few years. Several such spreadsheets designed for the IBM and compatible computers are listed in the following: Lotus 1-2-3 (Lotus Development Corp., Cambridge, MA), Multiplan 3 (Microsoft Corp., Redmond, WA), PFS: Professional Plan 1 (Software Publishing Corp., Mountain View, CA), Planning Assistant 2 (IBM Corp.), PlanPerfect 3 (WordPerfect Corp., Orem, UT) and SuperCalc4 1 (Computer Associates International, Inc., San Jose, CA). The list prices of the preceding spreadsheets vary from \$195 to 495. Some less expensive and less extensive spreadsheets are: The Twin Classic (Mosaic Software Inc., Cambridge, MA), VP-Planner 1.34 (Paperback Software Inc., Berkeley, CA) and Words & Figures 1 (Lifetree Software Inc., Monterey, CA) whose list prices are generally ca. \$100. Recent reviews of the capabilities of the above spreadsheets have been presented [1,2].

Spreadsheets have been employed in the preparation of business reports, modeling, forecasting, as small database managers, as graphics generators and in electronic circuit simulation. However, they have been little utilized

		-						
	A	B	C	D	E	F	6	H
1	Alpha	T (K)	Ŷ	X		Regressio	n Out	put:
2	0.4411	420			Constant			-3.3940
3	0.1319	405	-6.0830	0.000088	Std Err of	Y Est		0.08499
4	0.2020	410	-5.2018	0.000058	R Squared			0.99868
5	0.3026	415	-4.3332	0.000028	No. of Obsi	ervations		6
5	0.6187	425	-2.6066	-0.00002	Degrees of	Freedom		4
7	0.8199	430	-1.7158	-0.00005				
8	0.9788	435	-0.7182	-0.00008	X Coeffici	ent(s) -31	189.4	
9					=Std Err of	Coef. 565	. 3897	
10					2222222222	20=2222255	23222	********
11								
12						i====>	10	
13								
14	\a	(paneloff	}(home)	/remech"()	let c,0)*			
15		(goto)d3"	(1/63)-	(1/\$6\$2)*;	/c*{d},{end	}{d}{u}~		
15		(for i,0,	9,1,geti	equ}				
17		(branch p	roc}					
18		** / *						
19	getequ	{let \$xt5	,+\$B\$2)	"{let c3,	aindex (lis)	t,0,1)}{go	to)c3	•
29		-{edit}{hc	1#e}{r}{	bs}*/c*{d	}.{end}{d}{	u}~		
21		/drg						
22		(let diff	, Jabs ((index (va)	lues,0,i)-\$	h\$2)/\$h\$2)	}*	
23		(put resu	ilts,0,i	,+diff}*{	put results	,1,i,-\$g\$8	/500}	*
24		lput resu	lts,2,1	,+\$h\$4}*				
25								
26	proc	{goto}a41	*{goto}i	results*				
27	\b	{if Gcell	pointer	("content:	s")/Əmin(de)	$ t_a < 1.03$	(bran	ch sub)
28	\c	{d}{if ⊉c	ellpoin	ter ("type"	"){)"b"}(br	anch \b}		
29								
30	500	(r 3)(1et	z,@cell	lpointer ('	"contents")	} {put meci	h,0,C	,+Z}~
31 70		(1-2)(let	z1,0ce	llpointer	("contents"	}}~{put me	ch,1,	c,+z1}*
32		{let c,c+	13~(1-1)	{branch `	\c}			
აა •	1 2 1	A) . / / A . 7 P						
34	List	JIN! (\$Xt)	0/031^24	(-@]n[]-a;	5))^,25)			
35		Əln((\$xt5	0/b3}^2¥	(-Əln(l-a.	3))^.33)			
36		Wint(\$xt5	(/B3)^2¥	(-91n(1-a.	\$))^.5)			
3/ 70		Jal(\$xt)	/63}^21	(1-(1-a3))	~. 5)}			
১৯ সম		Wini(Sxt5	153721	11-(1-a5)'	~(1/3)))			
37		WINCIFX15	100121	(-7)AD)	2111			
40		din((\$xt)	₩D31^Z¥	(as)^2)				

@ln((\$B\$2/B3)^2#(A3+(1-A3)#@ln(1-A3)))

@ln((\$B\$2/B3)^2\$(1-(1-A3)^(1/3))^2)

@ln((\$B\$2/B3)^2\$(1-(2\$A3/3)-(1-A3)^(2/3)))

TABLE 1 Spreadsheet analysis of theoretical data (R2) [5]

178

41

42

43

...

values	-0.13545			Diff	E(K/N)	r^2	Mechasm
	-0.18060			2322222222	======	====================	
	-0.27090		results	0.32381533	7.71	0.982745	A4
	-1.37685			0.33928550	10.72	0.984305	A3
	-1.73580			0.32910695	17.10	0.985733	A2
	~0.54180			0.00000264	27.99	0.999999	R2
	-1.63719			0.02266640	30.35	0.998630	R3
	-2.15492			0.33026321	35.89	0.986934	Fi
	-3.59661			0.09223238	46.36	0.991240	D1
	-3.47160			0.03517788	52.86	0.999158	D2
				0.00810027	55.91	0.999749	D4
				0.02286565	62.37	0.998687	D3
	111Prob.	mech.	& E=====>	R2	29.0	Kcal/Mol	
	values	<pre>values -0.13545 -0.18060 -0.27090 -1.37685 -1.73580 -0.54180 -1.63719 -2.15492 -3.59661 -3.47160 ****Prcb.</pre>	<pre>values -0.13545 -0.18060 -0.27090 -1.37685 -1.73580 -0.54180 -1.63719 -2.15492 -3.59661 -3.47160 ****Prob. mech.</pre>	<pre>values -0.13545 -0.18060 -0.27090 results -1.37685 -1.73580 -0.54180 -1.63719 -2.15492 -3.59661 -3.47160 ###Prob. mech. & E=====></pre>	values -0.13545 Diff -0.18060 ====================================	values -0.13545 Diff E(K/H) -0.18060 ====================================	values -0.13545 Diff E(K/M) r^2 -0.18060 ====================================

in the field of thermal analysis. Recently, Multiplan and Lotus 1-2-3 were employed for the estimation of the kinetic parameters, activation energy Eand reaction order n, during the decomposition of various materials by means of dynamic thermogravimetric analysis (TG). This procedure was successfully applied to theoretical data, benzenediazonium chloride, Teflon, magnesium hydroxide, calcium oxalate monohydrate and sodium bicarbonate [3,4]. It was easier to apply Lotus rather than Multiplan since the former possessed many Macro commands whereas the latter did not possess any.

The aim of the present paper is to extend the use of spreadsheets in the analysis of TG (or differential scanning calorimetry) data for the estimation of E and mechanism.

THEORETICAL ASPECTS

It was previously shown [5] that

$$\ln[g(\alpha)(T*/T)^{2}] = \ln[g(\alpha*)] - (E/R)[(1/T) - (1/T*)]$$
(1)

where $g(\alpha) = \int_0^{\alpha} d\alpha / f(\alpha)$, α is conversion and T * is an arbitrarily selected reference temperature(K) at conversion $\alpha *$. For each of the ten different possible decomposition mechanisms employed, the corresponding slope and intercept of eqn. (1) can be obtained from TG data using a least-squares treatment. Then the mechanism whose intercept value affords the smallest

deviation from the corresponding theoretical value of $\ln[g(\alpha *)]$ was considered to be the most probable mechanism. The corresponding E value could also then be obtained from the value of the slope.

RESULTS AND DISCUSSION

The spreadsheet employed in this paper was Lotus 1-2-3, release 2, which is capable of employing many advanced Macro commands (ca. 40). This spreadsheet appears to be the standard by which others are measured, and is considered to be the world's most popular applications program (it sold more than 3 million copies in the second quarter of 1987 alone [2]). It can be used to handle complex mathematical models via its powerful built-in Macro language, and was applied in this paper to theoretical TG data as well as to TG data for sodium bicarbonate (SB) and TG data reported by Szako [6].

Table 1 depicts a spreadsheet analysis of theoretical TG data [5,7] wherein a final value of E = 28.0 kcal mol⁻¹ and an R2 mechanism were obtained (theoretically 28 and R2), cf. row 58. In this table, values of α and T are given in the first 2 columns (A and B). In column C, Y represents the left-hand-side of eqn. (1) while in column D X denotes the last term in eqn. (1) (1/T - 1/T *). The linear regression output (columns E-H) represent values for i = 10 (the last mechanism in "List" (B43)). The ten mechanisms tested are given in cells B34-B43. Theoretical values of $\ln[g(\alpha *)]$ at T * = 420 K and $\alpha * = 0.4411$ (A2 and B2) are depicted for the various mechanisms in cells B45-B54. Results are summarized in rows 47-56 wherein values of E, the square of the correlation coefficient, and "Diff" are presented for the various mechanisms tested. "Diff" is a function of the absolute difference between theoretical and calculated (the "Constant" in cell H2) values of intercept. Thus, for example, for the D3-mechanism Diff is equal to (3.4716-3.3940)/3.3940 = 0.02286 (cf. cells B22 and E56). After the results were automatically compiled, the subroutine "proc" (row 26) processed these results to obtain the most probable mechanism (MPM) and the corresponding value of E. The MPM was restricted to those values of [Diff/(minimum value of Diff obtained)] which were less than 1.03 (cf. cell B27). The linear regression output was obtained via the Macro command in B21 (the X, Y and output ranges had been previously designated). The Evalues were obtained from the values shown in cell G8. It may also be noted here that the r^2 value for the R2 mechanism was closest to unity.

In order to conserve space, Macro commands (which are similar to those in Table 1) have not been included in Tables 2–4. Table 2 portrays final results for the spreadsheet analysis of another set of theoretical TG values $[\alpha - T(K)]$ [5]. Final results were determined to be: E = 29.9 kcal mol⁻¹ and mechanism D3 (theoretically 30 and D3). Again the r^2 value of the MPM

	-3.7636	0.00057	1.00000	10	Ø							Mechnsm		Ā 4	P3	A2	R2	RJ	11 11	10	D 2	D4	D3
an Cataut							-14942.6	1.3823			10.0000	(4 \ L		0.99199	0.99469	0.99597	0.99879	0.99998	0.99664	0.98891	0.99640	0.99845	1.00000
Reordseir	, , , , , , , , ,	Y Est		ervations	Freedom		ent (s)	Coef.			i ana i	E (K/M)		1.71	3.17	6.27	12.63	13.52	15.39	23.87	26.48	27.59	29.89
	Constant	Std Err of	R Squared	No. of Obse	Degrees of		X Coefficie	Std Err of				_ Diff		0.059269	0.083395	0.087054	0.022038	0.002412	0.101501	0.096766	0.047363	0.020862	0.000169
×	:	0.000224	0.000173	0.000126	0.000081	0.000039	-0.00003	-0.00007	-0.00010	-0.00013	-0.00016	13 17 17 18 18 19 19 19 19 19 19 19 19 19 19 19		results									
>-		-7.1118	-4.3580	-5.6500	-4.9839	-4.3559	-3.2021	-2.6709	-2.1671	-1.6866	-1.2334	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											
T (K)	720	620	640	660	689	700	740	760	780	800	820	-0.17533	-0.23378	-0.35067	-1.51591	-1.83147	-0.70134	-1.87815	-2.41946	-3.87005	-3.76293		
Alpha	0.3910	0.0720	0.1070	0.1544	0.2166	0.2953	0.5019	0.6231	0.7459	0.8575	0.9428	values											

Spreadsheet analysis of theoretical data (D3) [5]

1ABLE 2

29.9 Kcal/Mol

###Prob, mech.& E=====> D3

\mathbf{c}	
μ	
Э	
B	
1	
Ē.	

Spreadsheet analysis of NaHCO₃ TG data [5]

tput:	-3.0457	0.04578	0.99928	¢	4		м	И
Regression Du	Constant	Std Err of Y Est	R Squared	No. of Observations	Degrees of Freedom		X Coefficient(s) -23117.	=Std Err of Coef. 309.562
×		0.000086	0.000057	0.000028	-0.00002	-0.00005	-0.00008	
7		-5.1140	-4.3289	-3.6668	-2.3861	-1.7764	-1.2157	
T (K)	423.2	408.2	413.2	418.2	428.2	433.2	438.2	#F
Alpha	0.528	0.208	0.300	0.403	0.667	0.806	0.917	

i====> 10

values -0.07166		Diff	E (K/M)	r^2	Mechnsm
-0.09554					
-0.14332	results	0.12109697	5.28 0	.998705	A4
-1.16162		0.13522531	7.51 0	. 998852	AG
-1.50778		0.12683775	12.25 0	.998979	A2
-0.28664		0.02957771	20.52 0	.997308	R2
-1.27731		0.01012770	22.27 0	.999210	RJ
-1.75080		0.12973025	26.18 0	.9999080	F1
-3.17526		0.11095399	33.81 0	.985285	D1
-3.01556		0.06018413	39.12 0	.993766	D2
		0.02632198	41.44 0	.996415	D4
		0.00991602	46.23 0	.999283	۶a

22.27 Kcal/Mol 46.23

*******Prob. mech. & E====> R3 D3

4
щ
Hone of the
F
Ē

[5]
data
Szako
of
analysis
Spreadsheet

ut:	-5.4942	0.27829	0.99558	۵	ሳ						
in Outp							946.0	. 9044			10
Regressio	Constant	Std Err of Y Est	R Squared	No. of Observations	Degrees of Freedom		X Coefficient(s) -26	Std Err of Coef. 732		14	, and a set of the se
×		0.000213	0.000156	0.000101	0.000049	-0.00004	-0.00009	-0.00013	-0.00017		
7		-10.982	-9.6361	-8.5520	-7.1839	-4.1159	-2.8298	-1.5070	-0.8939		
T (K)	453.2	413.2	423.2	433.2	443.2	463.2	473.2	483.2	493.2		
Alpha	0.1910	0.0112	0.0224	0.0393	0.0785	0.3427	0.5842	0.8764	0.9719		

values -0.38784		Diff	E (K/M)	r^2	Mechnsm
-0.77568	resul ts	0.02457499	5.73	0.990664	A4
-2.29704		0.03734731	8.14	0.991686	р Ч
-2.68510		0.02953495	13.26	0.992572	A2
-1.55137		0.04645394	25.04	0.994494	N L
-3.31096		0.02322670	26.04	0.995309	RJ
40000 M-		0.03203299	28.32	0.993282	F1
-5.41675		0.12038323	46.91	0.988656	D1
-5.37021		0.07502585	49.85	0.992795	D2
		0.04517823	51.16	0.994230	D4
		0.02257827	53.89	0.995580	٢q
***Prob. mech.% -	с Настание С	R3 D3	26.0 53.9	Kcal/Mol	

was closest to unity. The arbitrarily chosen reference values for T * and $\alpha *$ were 720 and 0.3910, respectively.

A worksheet analysis of TG data for the decomposition of SB is depicted in Table 3. Contrary to the theoretical TG data in Tables 1 and 2, the TG data for SB afforded 2 sets of results for E and mechanism. Although values of Diff for D3 and R3 were different, this difference was considered too small to be significant. Thus, the following results were obtained: E = 22.3kcal mol⁻¹ for an R3 mechanism and E = 46.2 kcal mol⁻¹ for a D3 mechanism. These results are in excellent agreement with those previously obtained [5].

Finally, a worksheet analysis of TG data obtained by Szako [6] is shown in Table 4. As in the case for Table 3 data, 2 sets of results for E and mechanism were obtained. Again, although values of Diff for D3 and R3 were different, this difference was considered too small to be significant. The following results were obtained: E = 26.0 kcal mol⁻¹ for an R3 mechanism and E = 53.9 kcal mol⁻¹ for a D3 mechanism, which are in excellent agreement with those previously reported [5].

FINAL REMARKS

Although Macros allow the automatic utilization of spreadsheets, final results of analyses may also be readily obtained using manual and automatic procedures in tandem. Further, while spreadsheet analysis may be slower when compared with a similar analysis via computer programming, it possesses certain salient advantages. Thus, it can provide neat formats of data and results and provide many automatic functions, such as for summations, standard deviations, sorting, data regression, graphics, etc. One of its best features is that it allows the user to observe various derived intermediate and final results in tabular form at a glance during analysis. Also, from the preceding, the spreadsheet worksheets presented for the estimation of kinetic parameters (and mechanism) can yield final values from TG data in satisfactory agreement with corresponding theoretical and reported values. Thus, it is highly recommended that spreadsheet procedures be utilized to a greater extent in the field of thermal analysis whenever possible either as primary or secondary methods.

REFERENCES

- 1 R. Malloy, Spreadsheets, BYTE, 12(7) (1987) 69.
- 2 M. Adrian, C. Barr, M. Falkner, J. Taylor and W.A. Taylor, Challenging 1-2-3 on Price and Power, PC Mag. 6(18) (1987) 94.

- 3 L. Reich, L.Z. Pollara and S.S. Stivala, Thermochim. Acta, 106 (1986) 379.
- 4 L. Reich and S.H. Patel, Am. Lab., 19(9) (1987) 23 [Part 1 of this series].
- 5 L. Reich and S.S. Stivala, Thermochim. Acta, 75 (1984) 405.
- 6 J. Szako, J. Phys. Chem., 72 (1968) 2406.
- 7 L. Reich and S.S. Stivala, Thermochim. Acta, 24 (1978) 9.